Thursday, December 15, 2011

Emission Spectroscopy

(Partner: Paul B.)


Observations: (Before):
Barium Chloride- white, small sand-like crystals
Calcium Chloride- white, small, shiny balls
Lithium Chloride- white, small, powdery crystals
Sodium Chloride- white, powdery, sugar-like crystals
Strontium Chloride- white, sugar-like crystals
Cupric Sulfate- blue-green sand-like crystals
Potassium Chloride- white, small sand-like crystals
Unknown 1- white, small sand-like crystals
Unknown 2- blue-green sand-like crystals

(During):

Sodium Chloride
  
Barium Chloride
Strontium Chloride
Lithium Chloride


Cupric Sulfate

Potassium Chloride

Unknown   #2

Unknown #1


Calcium Chloride (Left)
Lithium Chloride (Right)

Questions:
1) According to the modern theory of the atom, where may an atom's electrons be found?
          The electrons orbit the nucleus in electron clouds.

2) How do electrons become "excited"?
          When an electron gains an E, it jumps to a higher level.

3) How should the burner flame be adjusted?
          It can be adjusted by turning the piece at the top to the left or right.

4) Why should the wire loops used in the flame emission tests be returned to their appropriate salt container?
          If the loops are not place back in the appropriate container then it will cause the chemicals to mix, affecting the outcome of the experiment.

5) How can a contaminated loop be cleaned?
          To clean the loop, it should be ran under distilled water.

6) What is the identity of the unknown salt(s)?
          Unknown #1 is potassium chloride, and Unknown #2 is cupric sulfate (copper chloride)

7) Prior to its discovery of Earth, the existence of helium was first confirmed in the sun. Explain how this can be possible.
          When holding the spectroscope up to the light of the sun, it shows the helium spectrum of the sun.

Wednesday, December 14, 2011

Determination of the Mass Percent of Sulfate in an Unknown Sulfate Salt

(Partner: Nina T.)


Procedure:


Day 1:
1) Measure 25ml of BaCl2 in a graduated cylinder.
2) Measure half a spoonful of sulfate salt in a beaker. Determine the mass of the salt and the beaker.
3) Pour 5ml BaCl2 into the beaker. 
4) Use a stirring rod to stir the solution.
5) Continue to pour BaCl2 until it stops reacting with the salt. 
6) Take filter paper and measure. Record.
7) Put filter paper into a funnel and place a ring stand over your beaker. 
8) Slowly pour solution from Beaker 1 into the funnel placed over Beaker 2. 
9) Rinse through filter with distilled H2O, leaving BaSO4.
10) Take filter paper and place in oven. 


Day 2:
11) Take filter paper out of oven and record mass. By subtracting the weight of the filter paper from the new mass, you get the mass of the BaSO4. 
12) Use stoichiometry to determine the theoretical mass of the SO4.
13) Calculate the mass percent of sulfate.


Observations:


BaCl2:
          Before: Clear liquid, transparent, like water
Sulfate Salt: 
          Before: White solid, like salt
BaCl 2 + Sulfate Salt:
          Solution: Foggy white, thick liquid





BaSO4:
          After heating: white, smooth, cracked, like chalk




Day 1 Data
Day 2 Data
Mass

Grams
Mass
Grams
Empty 100ml beaker
29.73g
Filter Paper with BaSO4
1.42g
Beaker with Sulfate Salt
31.95g
(BaSO4)
(0.94g)
(Sulfate Salt in beaker)
(2.22g)


Filter Paper
0.48g





0.94g BaSO4
1 mol
1 SO4
96.06g SO4
233.39g BaSO4
1 BaSO4
1 mol



= 0.39g SO4


Mass % =     mass SO4         x 100 
                  mass sulfate salt




Mass % =     0.39g SO4         x 100  = 17.6% = mass percent of SO4
                   2.22g sulfate salt

% Error =      17.6 - 55.1       x 100 = 68% = percent error
                          55.1


The Determination of the Mass of a Product of a Chemical Reaction

(Partner: Nina T.)


Observations:

 Day 1: NaCHO(Baking Soda) + HCl
                                                 
                                         Before: - very white powder with some clumps
                                           
                                         During: - the NaCHObubbled quickly, then popped with smoke
                                                       - less and less NaCHO3, no chunks       
                                                       - solution becomes milk-like in color
                                                       - NaCHOnot dissolved in HCl     
                                                       - with each drop of HCl, more and more bubbles appear 
                                                       - solution becomes clearer and less NaCHO3 is visible






Day 2: NaCHO(Baking Soda) + HCl --> NaCl + CO2 + H2O
                                                 
                                         Before: NaCl formed up along sides of beaker
                                                       - yellow at top edges
                                                       - large NaCl bubbles at bottom of beaker
               

                                           
                           
                                            
                                         
                                         During: - the NaCl begins to make a slight pop noise
                                                       - yellow edges at top become light tan



Day 1 Data
Day 2 Data
Mass
Grams
Mass
Grams
Empty 150ml beaker
73.39g
NaCl plus beaker (first weighing)
78.89g
NaHCO3 in beaker

81.19g
NaCl plus beaker (second weighing)
78.85g



NaCl plus beaker (third weighing)
78.79g


Discussion Questions:


1) Write the grams of NaHCO3 you had in your beaker.
          81.19g - 73.39g = 7.8g NaHCO3


2) Calculate how many moles of NaHCO3 the mass is.
                                                                                     
    7.8g
NaHCO3
 1 mole

 84.02g
NaHCO3                  

= 0.09 mol NaHCO3 

3) Write the molar ratio for the NaHCO3 / NaCl ratio. 
         1 NaHCO3 : 1 NaCl

4) Write the number of moles of NaCl you predict were produced in your experiment. 

 7.8g
NaHCO3
 1 mol
 1 NaCl

 84.02g
NaHCO3
 1
NaHCO3

= 0.09 mol NaCl 


5) Calculate the mass of NaCl you predict will be produced.

 7.8g
NaHCO3
 1 mol
 1 NaCl
 58.45g NaCl

 84.02g
NaHCO3
 1
NaHCO3
 1 mol
= 5.43g NaCl

6) Determine, by subtraction, the actual mass of NaCl produced in your experiment. 

   a) First weighing:  78.98g NaCl - 73.39g (mass of beaker) = 5.59g NaCl
   b) Second weighing:  78.85g NaCl - 73.39g = 5.46g NaCl
   c) Third weighing:  78.79g NaCl - 73.39g = 5.40g NaCl

7) Calculate your percentage yield. 

    5.4g NaCl
    5.43g NaCl

x100 = 99% yield

8) What are plausible reasons why your percent yield is less than 100%?
         -We did not use enough NaHCO3.
9) What are plausible reasons why your percent yield is more than 100%?
         -We used too much NaHCO3.                                                   

Sunday, November 6, 2011

Determination of the Percentage of Water in Hydrated Copper (II) Sulfate Lab

Observations:

Copper (II) Sulfate Crystals:
                                            Before: small (sand grain like) blue pieces with some white pieces
                                           
                                            During: - a light blue rim forms around the edges of the crystals
                                                         - light blue rim spreads closer towards center
                                                         - blue crystals completely light blue
                                                         - white rim forms around edges, moves closer towards center
                                                         - light blue crystals completely white

                                             After:  - broken up into solid-like pieces
                                                         - light green on powder/crystals on bottom

Calculations:


Evaporating dish: 50.04g
Watch glass: 57.67g
Dish with Copper (II) Sulfate Crystals: 59.38g
Dish with CuSOcrystals after cooling: 56.03g

1) 59.38g - 50.04g = 9.34g CuSO
56.03g - 50.04g = 5.99g CuSO
(9.34g - 5.99g = 3.35g)
3.35g/9.34g = 35.87% water lost

2) 35.87 - 36.08  =  0.0058 =  0.58% error
        36.08

3)


=  0.06  mol CuSO4
    0.06  = 1

                                                                                                                       

=  0.19  mol H2
    0.06  = 3 (X=3)

   CuSO4 ∙ 3H2O

Wednesday, October 19, 2011

Replacement Reactions Lab






Conclusion Questions:

Part I


1. What type of chemical reaction occurred?
     Single Replacement

2. What is the solid formed in the reaction?'
     Copper Nitrate

3. Would the reaction still occur if we used aluminum wire instead of copper? Why or Why not?

     Yes, because it would still be the same type of reaction that would occur.


Part II

4. Which of the metals reacted the fastest? The slowest?
     Magnesium was the fastest reaction and tin was the slowest.

5. Based on your observations, rank the metals, including copper, from most active to least. Does this agree with the activity series chart on your reference tables?
     Most active --> least active: Magnesium, Aluminum, Zinc, Tin, Copper


Part III

6. Why did you have to expose the inside of your penny by filing it?
     Filing the edges was the only way to expose the zinc inside of the penny to the HCl.

7. Calculate the percentage of copper in your penny:
     19.7% ≈ 20%

8. Find the percent error in the amount of copper you calculated for your penny, using the known percent of copper you looked up in the pre-lab.
     17.2% ≈ 17%

9. Where might any error have come from, aside from human or instrument error? Be specific.
     We may not have let the penny sit long enough in the HCl (Hydrochloric Acid) to let the zinc fully dissolve away, which left some behind, causing the greater percentage of copper.



10. When acid is added to the penny, bubbles appear. According to your balanced equation, what type of gas do you think is released from the reaction?
     Hydrogen gas is released through the bubbles.

Thursday, October 6, 2011

Type of Chemical Reactions Lab

Observations:


Sample
Before rxn
After rxn
A: Cu

The wire was light brown, skinny, and shiny.


The flame was green and orange. The copper began melting and turned bright orange. A piece fell off and turned black. .
Mg
The ribbon had a silver color, wasflat and somewhat bent 
Once the ribbon got hot enough, it burst into an intensely bright, white flame. After cooling, a white powdery substance was left on the prongs where the ribbon was. 
B: CuCO4
 It was a light green, powdery chalk-like substance. 
As the Copper(II) Carbonate got hotter, it slowly started to turn all black. When it was all black and the burner was turned off, we put the lit splint in the test tube and the flame went out. The smoke dipped to the bottom and back up and out the top. 
C: Zn + HCl
 The Zinc was like a small grey   rock. The liquid was clear/ transparent.

Once the Zinc was dropped into the Hydrochloric Acid, the acid started to bubble immensely and steam /smoke was coming out of the top of the tube. We put the lit splint in the test tube and the flame went out with a pop. 



Zn + CuSO4
 The Zinc was like a small grey   rock. The liquid was light blue, somewhat clear/transparent.
Very little reaction. The Zinc gets darker in color. 
D: Pb(N03)2 + Kl
 The lead nitrate and the potassium iodide were clear/transparent liquids.
 Once the potassium iodide is added to the lead nitrate, the liquid turned entirely yellow. After it set, the yellow stayed at the bottom. 

























































Questions and Problems:

I.
            A) Copper(I) + Oxygen à Copper Oxide                 
                 Solid + Gas à Solid
                        2Cu + O2 à 2CuO
           
B) Magnesium + Oxygen à Magnesium Oxide
     Solid + Gas à Solid

                        2Mg + O2 à 2MgO

C) Copper(II) Carbonate à Copper Oxide  + Carbon Dioxide
     Solid + Solid à Gas
                        CuCO3 à CuO + CO2

D) Zinc + Hyrdochloric Acid à Zinc Chloride + Hydrogen
     Solid + Aqueous à Aqueous + Gas
                        Zn + 2HCl à ZnCl2 + H2

E) Zinc + Copper(I) Sulfate à Zinc Sulfate + Copper(I)
     Solid + Aqueous à Aqueous + Solid

                        Zn + CuSO4 à ZnSO4 + Cu

F) Lead(II) Nitrate + Potassium Iodide à Potassium Nitrate + Lead Iodide
    Aqueous + Aqueous à Aqueous + Solid

                        Pb(NO3)2 + 2KI à 2KNO3 + PbI2

II.
A) We took a wood splint and lit the end on fire and placed it over the end of the test tube, and the flame went out. The carbon dioxide in the tube displaced the oxygen needed to make the fire burn, thus putting out the flame.

B) We tilted the test tube and then lit a wood splint on fire and placed it over the end of the tube, and the flame went out with a pop noise.  Zn + HCl à ZnCl + H

III.
A)     Single Replacement
2AgNO3 + Cu à Cu(NO3)2 + 2Ag

B)     Double Replacement
BaCl2 + Na2SO4 à BaSO4 + 2NaCl

C)     Single Replacement
Cl2 + 2NaBr à 2NaCl + Br2

D)     Decomposition
2KClO3 à 2KCl + 3O2

E)      Regular Combustion
2H2 + O2 à 2H2O